Research Article
Dynamic and Static Features-Aware Recommendation with Graph Neural Networks
Table 5
Performance of 16 experiments obtained from Taguchi’s method.
| ID | Time slices | Filter-first CNN layer | Filter-second CNN layer | Embedding factors | Recall@N | NDCG@N |
| 1 | 11 | 2 | 8 | 8 | 0.3422 | 0.4200 | 2 | 11 | 4 | 16 | 16 | 0.3552 | 0.4369 | 3 | 11 | 6 | 32 | 32 | 0.3617 | 0.4420 | 4 | 11 | 8 | 64 | 64 | 0.3540 | 0.4296 | 5 | 21 | 2 | 16 | 32 | 0.3560 | 0.4373 | 6 | 21 | 4 | 8 | 64 | 0.3626 | 0.4412 | 7 | 21 | 6 | 64 | 8 | 0.3451 | 0.4224 | 8 | 21 | 8 | 32 | 16 | 0.3438 | 0.4186 | 9 | 31 | 2 | 32 | 64 | 0.3672 | 0.4470 | 10 | 31 | 4 | 64 | 32 | 0.3660 | 0.4481 | 11 | 31 | 6 | 8 | 16 | 0.3463 | 0.4237 | 12 | 31 | 8 | 16 | 8 | 0.3469 | 0.4259 | 13 | 41 | 2 | 64 | 16 | 0.3547 | 0.4232 | 14 | 41 | 4 | 32 | 8 | 0.3483 | 0.41786 | 15 | 41 | 6 | 16 | 64 | 0.3533 | 0.4217 | 16 | 41 | 8 | 8 | 32 | 0.3491 | 0.4286 |
|
|