Research Article
An Improved YOLOX Algorithm for Forest Insect Pest Detection
Table 1
Average precision performance of state-of-the-art object detection methods under different IoU thresholds on IP102.
| | | | | | | |
| FPN | 28.10 | 54.93 | 23.30 | — | — | — | SSD300 | 21.49 | 47.21 | 16.57 | — | — | — | RefineDet | 22.84 | 49.01 | 16.82 | — | — | — | YOLOv3 | 25.67 | 50.64 | 21.79 | — | — | — | Faster R-CNN | 28.4 | 48.0 | 30.2 | 17.8 | 29.0 | 29.4 | PAA | 25.2 | 42.7 | 26.1 | 18.6 | 27.1 | 26.1 | Dynamic R-CNN | 29.4 | 50.7 | 30.3 | 14.6 | 25.9 | 30.4 | TOOD | 26.5 | 43.9 | 28.7 | 19.0 | 28.3 | 27.4 | Spare R-CNN | 21.1 | 33.2 | 23.8 | 10.2 | 24.3 | 22.0 | YOLOX | 31.1 | 52.1 | 32.3 | 23.2 | 32.4 | 32.0 | Improved YOLOX | 32.4 | 53.6 | 33.4 | 24.8 | 33.5 | 32.9 |
|
|