Research Article
A Generative Image Inpainting Model Based on Edge and Feature Self-Arrangement Constraints
Table 4
Quantitative comparison of algorithms.
| Data set | Mask rate | Mean L1 loss | PSNR¶ | SSIM¶ | GL | PConv | PEN-Net | Ours | GL | PConv | PEN-Net | Ours | GL | PConv | PEN-Net | Ours |
| Celeba | 10% ∼ 20% | 0.035 | 0.031 | 0.026 | 0.012 | 25.11 | 26.29 | 27.69 | 31.65 | 0.853 | 0.885 | 0.912 | 0.931 | 20% ∼ 30% | 0.062 | 0.051 | 0.041 | 0.036 | 23.96 | 24.21 | 26.44 | 30.21 | 0.811 | 0.817 | 0.826 | 0.839 | 30% ∼ 40% | 0.081 | 0.055 | 0.051 | 0.037 | 23.64 | 23.85 | 23.86 | 27.03 | 0.795 | 0.811 | 0.811 | 0.841 | 40% ∼ 50% | 0.101 | 0.089 | 0.072 | 0.065 | 22.21 | 21.47 | 22.37 | 26.41 | 0.713 | 0.786 | 0.797 | 0.823 |
| Facade | 10% ∼ 20% | 0.043 | 0.033 | 0.031 | 0.019 | 23.08 | 23.59 | 24.19 | 32.36 | 0.801 | 0.857 | 0.841 | 0.943 | 20% ∼ 30% | 0.047 | 0.073 | 0.045 | 0.044 | 23.57 | 23.21 | 23.91 | 27.17 | 0.774 | 0.863 | 0.861 | 0.889 | 30% ∼ 40% | 0.088 | 0.091 | 0.073 | 0.055 | 21.15 | 22.19 | 22.57 | 25.33 | 0.766 | 0.712 | 0.854 | 0.871 | 40% ∼ 50% | 0.101 | 0.113 | 0.076 | 0.067 | 21.67 | 22.31 | 21.34 | 23.57 | 0.714 | 0.751 | 0.836 | 0.857 |
| Places2 | 10% ∼ 20% | 0.037 | 0.021 | 0.023 | 0.011 | 21.61 | 23.61 | 25.33 | 30.19 | 0.784 | 0.835 | 0.814 | 0.919 | 20% ∼ 30% | 0.057 | 0.054 | 0.040 | 0.031 | 21.17 | 22.71 | 24.74 | 27.47 | 0.776 | 0.797 | 0.804 | 0.814 | 30% ∼ 40% | 0.051 | 0.058 | 0.053 | 0.046 | 20.53 | 22.15 | 23.87 | 25.31 | 0.751 | 0.779 | 0.789 | 0.826 | 40% ∼ 50% | 0.071 | 0.083 | 0.075 | 0.066 | 20.27 | 21.94 | 21.61 | 22.92 | 0.737 | 0.764 | 0.778 | 0.793 |
|
|
The bold values are the experimental results in this paper.
|