Research Article

[Retracted] An AI-Driven Hybrid Framework for Intrusion Detection in IoT-Enabled E-Health

Table 3

10-Fold results of Cu-LSTM+ GRU, Cu-GRU+ DNN, and Cu-BLSTM.

 Model12345678910

Accuracy (%)Cu-LSTM+GRU98.2598.2399.1598.8999.0899.3199.1699.1299.1699.84
Cu-GRU+DNN97.5697.2197.8697.5498.5498.5799.1598.8198.6298.86
Cu-BLSTM98.3698.3698.4198.9398.8798.8798.6998.3698.2498.29

F1-score (%)Cu-LSTM+GRU98.2498.6399.6899.0699.0699.2599.1999.3499.0899.68
Cu-GRU+DNN98.6298.4598.1598.6298.6298.7499.1199.1598.8298.18
Cu-BLSTM98.9498.9198.2998.2998.6898.1598.1998.8199.1699.43

Recall (%)Cu-LSTM+GRU98.9698.9299.2698.6198.2198.6198.8998.9798.6998.92
Cu-GRU+DNN98.1598.0698.0498.0498.6198.2598.5498.9599.1598.87
Cu-BLSTM98.1598.1698.1698.8598.7198.0698.1598.6498.6498.86

Precision (%)Cu-LSTM+GRU98.1698.6899.1499.1499.3299.3699.8699.5198.9198.34
Cu-GRU+DNN98.6998.8598.8598.0997.9397.1998.1498.3198.1698.31
Cu-BLSTM98.1998.9698.4898.4898.8698.4698.6999.0599.1798.78