Research Article

A Multilevel Temporal Context Network for Sleep Stage Classification

Table 6

Comparison between MLTCN and other existing approaches on Sleep-EDF-2013 and Sleep-EDF-2018 datasets.

DatasetModelArchitectureInputApproachACCMF1Kappa

Sleep-EDF-2013Phan et al. [28]CNNSpectrogramOne-to-one79.169.80.70
Tsinalis et al. [7]CNNRaw signalMany-to-one74.869.80.65
Vilamala et al. [23]CNNSpectrogramMany-to-one81.376.50.74
Seo et al. [22]CNN + Bi-LSTMRaw signalMany-to-one83.676.50.77
Phan et al. [14]CNNSpectrogramOne-to-many81.973.80.74
Supratak et al. [25]CNN + RNNRaw signalMany-to-many82.076.90.76
Zhang et al. [16]DCNN + RNNSpectrogram + raw signalMany-to-many83.8
Yang et al. [10]1D-CNN-HMMRaw signalMany-to-many83.9876.90.78
MLTCN (ours)CNN + TCN + HMMSpectrogram + raw signalOne-to-many84.277.10.78

Sleep-EDF-2018Phan et al. [14]CNNSpectrogramOne-to-many79.672.80.72
Supratak et al. [25]CNN + RNNRaw signalMany-to-many77.871.80.70
MLTCN (ours)CNN + TCN + HMMSpectrogram + raw signalOne-to-many81.074.90.74