Research Article
DA-ActNN-YOLOV5: Hybrid YOLO v5 Model with Data Augmentation and Activation of Compression Mechanism for Potato Disease Identification
Table 2
Accuracy of the DA-ActNN-YOLOV5m model using different data augmentation methods in the PBD-IM dataset.
| No. | Data augmentation methods | Precision (%) | mAP (%) | Earlyblight | Healthy | Lateblight |
| 1 | Rotation_transform | 96.72 | 97.56 | 96.43 | 97.56 | Width_transform_range | Height_transform_range |
| 2 | Rotation_transform | 98.87 | 98.44 | 97.85 | 98.39 | Width_transform_range | Height_transform_range | Shear_transform | Zoom_transform |
| 3 | Rotation_transform | 99.12 | 100.00 | 98.94 | 99.75 | Width_transform_range | Height_transform_range | Shear_transform | Zoom_transform | Horizontal_flip | Brightness_transform | Channel_transform_range | Fill_nearest |
| 4 | Rotation_transform | 99.98 | 100.00 | 99.85 | 99.81 | Width_transform_range | Height_transform_range | Shear_transform | Zoom_transform | Horizontal_flip | Brightness_transform | Channel_transform_range | Fill_nearest | Random_rain | Random_fog | Random_shadow | Shadow_roi |
|
|