Research Article

DA-ActNN-YOLOV5: Hybrid YOLO v5 Model with Data Augmentation and Activation of Compression Mechanism for Potato Disease Identification

Table 2

Accuracy of the DA-ActNN-YOLOV5m model using different data augmentation methods in the PBD-IM dataset.

No.Data augmentation methodsPrecision (%)mAP (%)
EarlyblightHealthyLateblight

1Rotation_transform96.7297.5696.4397.56
Width_transform_range
Height_transform_range

2Rotation_transform98.8798.4497.8598.39
Width_transform_range
Height_transform_range
Shear_transform
Zoom_transform

3Rotation_transform99.12100.0098.9499.75
Width_transform_range
Height_transform_range
Shear_transform
Zoom_transform
Horizontal_flip
Brightness_transform
Channel_transform_range
Fill_nearest

4Rotation_transform99.98100.0099.8599.81
Width_transform_range
Height_transform_range
Shear_transform
Zoom_transform
Horizontal_flip
Brightness_transform
Channel_transform_range
Fill_nearest
Random_rain
Random_fog
Random_shadow
Shadow_roi