Research Article

DA-ActNN-YOLOV5: Hybrid YOLO v5 Model with Data Augmentation and Activation of Compression Mechanism for Potato Disease Identification

Table 5

The methodology of this study compared to other research methods.

No.ReferencesYearMethod descriptionAP (%)

1Sholihati et al. [32]2020VGGNet16 + VGGNet1991.31
2Yang et al. [19]2020Faster R-CNN + SIFT + K-means90.83
3Barman et al. [33]2021Self-build CNN (SBCNN)96.98
4D. F. Wang, and J. Wang [18]2021SE + ResNet50+DenseNet-12197.99
5Rashid et al. [34]2021PDDCNN + data augmentation99.75
6Afzaal et al. [35]2021GoogleNet + VGGNet + EfficientNet94.00
7Hou et al. [36]2022k-NN + SVM + ANN + RF97.40
8Chen et al. [37]2022MobileNetV2+GAN + Attention mechanism + octave97.73
9Mahum et al. [38]2022DenseNet-201 + Efficient DenseNet97.20
10Sharma et al. [39]2022Deep CNN97.66
11Proposed model2022YOLO v5+ data augmentation + ActNN (DA-ActNN-YOLOV5)99.81