Research Article
DA-ActNN-YOLOV5: Hybrid YOLO v5 Model with Data Augmentation and Activation of Compression Mechanism for Potato Disease Identification
Table 5
The methodology of this study compared to other research methods.
| No. | References | Year | Method description | AP (%) |
| 1 | Sholihati et al. [32] | 2020 | VGGNet16 + VGGNet19 | 91.31 | 2 | Yang et al. [19] | 2020 | Faster R-CNN + SIFT + K-means | 90.83 | 3 | Barman et al. [33] | 2021 | Self-build CNN (SBCNN) | 96.98 | 4 | D. F. Wang, and J. Wang [18] | 2021 | SE + ResNet50+DenseNet-121 | 97.99 | 5 | Rashid et al. [34] | 2021 | PDDCNN + data augmentation | 99.75 | 6 | Afzaal et al. [35] | 2021 | GoogleNet + VGGNet + EfficientNet | 94.00 | 7 | Hou et al. [36] | 2022 | k-NN + SVM + ANN + RF | 97.40 | 8 | Chen et al. [37] | 2022 | MobileNetV2+GAN + Attention mechanism + octave | 97.73 | 9 | Mahum et al. [38] | 2022 | DenseNet-201 + Efficient DenseNet | 97.20 | 10 | Sharma et al. [39] | 2022 | Deep CNN | 97.66 | 11 | Proposed model | 2022 | YOLO v5+ data augmentation + ActNN (DA-ActNN-YOLOV5) | 99.81 |
|
|