Research Article
Research on Real-Time Face Key Point Detection Algorithm Based on Attention Mechanism
Table 4
Comparison results of accuracy of different algorithms on each data set.
| Algorithm | 300W-LP | WFLW | AFLW2000-3D | AR (%) | MR (%) | AR (%) | MR (%) | AR (%) | MR (%) |
| SqueezeNet [47] | 95.61 | 4.39 | 96.48 | 3.52 | 96.83 | 3.17 | Xception [48] | 93.45 | 6.55 | 95.23 | 4.77 | 95.37 | 4.63 | LBP [49] | 95.68 | 4.32 | 96.37 | 3.63 | 96.51 | 3.49 | ShuffleNetV2 [50] | 94.52 | 5.48 | 95.42 | 4.58 | 94.37 | 5.63 | MobileNetV2 [51] | 97.28 | 2.72 | 97.48 | 2.52 | 94.59 | 5.41 | This method | 98.27 | 1.73 | 98.36 | 1.64 | 97.48 | 2.52 |
|
|