Research Article

A Distinguishable Pseudo-Feature Synthesis Method for Generalized Zero-Shot Learning

Table 2

Quantitative comparisons of average per-class GZSL classification accuracy (%).

MethodAWA2aPYCUBSUN

LATEM [9]77.311.520.073.00.10.257.315.224.028.814.719.5
DEM [19]86.430.545.175.111.119.454.019.613.634.320.525.6
CPL [8]83.151.063.273.219.630.958.628.037.932.421.926.1
DVBE [20]70.863.667.058.332.641.860.253.256.537.245.040.7
DCC [21]82.955.166.274.834.447.257.746.551.541.033.136.6
HSVA [22]79.357.866.959.551.955.539.048.643.3

SEZEL [23]68.158.362.853.341.546.730.540.934.9
DUET [10]90.248.263.455.621.831.380.139.753.1
Inf-FG [26]63.458.360.757.045.850.837.144.740.5
LDMS [25]71.860.965.966.337.447.861.648.053.936.245.640.3
FREE [27]75.460.467.159.955.757.737.744.840.9
GCF [28]75.160.467.056.837.144.959.761.060.337.847.942.2

SPF [15]60.952.456.363.430.240.959.032.241.6
TCN [14]65.861.263.464.024.135.152.052.652.337.331.234.0
LIUF [16]83.560.670.279.138.251.654.051.252.540.445.742.9
DPFS87.36171.883.038.652.763.854.058.543.049.646.1