Research Article
Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
Table 1
Parameters of the dilated convolutional neural network model.
| Object | Hyperparameter settings |
| Feature extractor | Block 1 | Convolutional layer #1 | Number of channels: 4, kernel width: 5, stride: 2 | Pooling layer #1 | Kernel width: 2, stride: 2 | Block 2 | Convolutional layer #2 | Number of channels: 8, kernel width: 5, stride: 2 | Pooling layer #2 | Kernel width: 2, stride: 2 | Block 3 | Convolutional layer #3 | Number of channels: 16, kernel width: 5, stride: 2 | Pooling layer #3 | Kernel width: 2, stride: 2 |
| Decision maker | Block 4 | Fully connected layer #1 | Network width: input dimension | Fully connected layer #2 | Network width: 128 | Fully connected layer #3 | Network width: number of fault category |
| Early stopping | 5 | Maximum number of iterations | 100 | Learning rate | 10ā4 | Small batch size | 100 |
|
|