Research Article

Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis

Table 1

Parameters of the dilated convolutional neural network model.

ObjectHyperparameter settings

Feature extractorBlock 1Convolutional layer #1Number of channels: 4, kernel width: 5, stride: 2
Pooling layer #1Kernel width: 2, stride: 2
Block 2Convolutional layer #2Number of channels: 8, kernel width: 5, stride: 2
Pooling layer #2Kernel width: 2, stride: 2
Block 3Convolutional layer #3Number of channels: 16, kernel width: 5, stride: 2
Pooling layer #3Kernel width: 2, stride: 2

Decision makerBlock 4Fully connected layer #1Network width: input dimension
Fully connected layer #2Network width: 128
Fully connected layer #3Network width: number of fault category

Early stopping5
Maximum number of iterations100
Learning rate10āˆ’4
Small batch size100