Research Article
Network Intrusion Detection Method Based on FCWGAN and BiLSTM
Table 12
Comparison of classification algorithms on UNSW-NB15 dataset.
| Algorithm | Evaluation metrics | Accuracy | Precision | Recall | F1-score | Time (s) |
| FCWGAN-RF | 81.00 ± 0.37 | 81.94 ± 0.33 | 80.97 ± 0.31 | 81.45 ± 0.32 | 1 | FCWGAN-DNN | 83.44 ± 0.31 | 84.12 ± 0.33 | 83.40 ± 0.27 | 83.76 ± 0.30 | 2 | FCWGAN-LSTM | 84.98 ± 0.30 | 85.44 ± 0.29 | 84.67 ± 0.25 | 85.05 ± 0.28 | 3 | Model in this paper | 85.59 ± 0.27 | 86.11 ± 0.21 | 85.57 ± 0.24 | 85.84 ± 0.22 | 4 |
|
|