Research Article
Network Intrusion Detection Method Based on FCWGAN and BiLSTM
Table 14
Comparison of multiclassification on UNSW-NB15 dataset.
| Algorithm | Evaluation metrics | Accuracy | Precision | Recall | F1-score | Time (s) |
| CNN-BiLSTM | 82.08 ± 0.43 | 82.68 ± 0.43 | 80.00 ± 0.37 | 81.32 ± 0.40 | 10 | SSAE-LSTM | 82.31 ± 0.45 | 83.65 ± 0.44 | 81.94 ± 0.36 | 82.78 ± 0.41 | 7 | CWGAN-DNN | 82.61 ± 0.37 | 82.95 ± 0.41 | 82.11 ± 0.33 | 82.53 ± 0.38 | 14 | AE-CGAN-RF | 81.24 ± 0.39 | 83.47 ± 0.40 | 80.31 ± 0.35 | 81.86 ± 0.38 | 13 | Model in this paper | 85.59 ± 0.27 | 86.11 ± 0.21 | 85.57 ± 0.24 | 85.84 ± 0.22 | 4 |
|
|