Research Article

Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization

Table 2

HSI categorization for KSC dataset.

methodsRNNDCNNSDCNNCSDCNNCSDCNN-AO

OA45.22 ± 0.4547.89 ± 0.8988.36 ± 1.1387.48 ± 0.8692.33 ± 1.08
AA37.31 ± 1.0656.60 ± 3.2985.39 ± 1.1782.43 ± 1.1193.44 ± 1.82
K52.97 ± 0.5853.12 ± 1.0391.62 ± 2.5493.12 ± 0.2697.22 ± 1.25
122.89 ± 1.0930.33 ± 7.3389.00 ± 1.0329.21 ± 30.084.77 ± 11.6
244.46 ± 5.0042.53 ± 3.0486.35 ± 3.8084.79 ± 0.2692.38 ± 4.87
346.69 ± 2.6153.91 ± 8.2886.18 ± 7.2485.93 ± 1.2693.06 ± 4.53
429.79 ± 9.721.17 ± 3.2584.17 ± 5.5288.11 ± 1.1295.84 ± 4.89
536.71 ± 6.6768.79 ± 2.1385.75 ± 2.5587.28 ± 1.3494.65 ± 1.95
688.57 ± 1.7192.78 ± 0.7888.08 ± 3.0693.82 ± 0.3295.95 ± 0.96
738.34 ± 11.420.85 ± 7.7971.89 ± 29.4542.69 ± 2.1392.48 ± 24.0
891.46 ± 2.1594.84 ± 3.1591.25 ± 2.4095.22 ± 0.3197.11 ± 3.09
964.78 ± 19.040.00 ± 0.0054.0 ± 49.032.00 ± 2.0589.72 ± 8.38
1061.46 ± 1.9161.53 ± 1.2489.47 ± 7.6981.28 ± 0.8998.40 ± 2.86
1179.89 ± 2.4966.88 ± 4.3393.77 ± 5.0395.85 ± 0.6793.97 ± 3.29
1247.14 ± 5.5647.57 ± 3.8577.97 ± 5.1683.77 ± 4.3795.89 ± 4.55
1349.68 ± 7.1787.02 ± 1.2297.45 ± 5.2979.86 ± 4.5697.89 ± 0.87