Research Article

Hyperspectral Image Classification with Optimized Compressed Synergic Deep Convolution Neural Network with Aquila Optimization

Table 3

HSI categorization for Salinas Scene (SS) dataset.

MethodsRNNDCNNSDCNNCSDCNNCSDCNN-AO

OA46.78 ± 1.4557.49 ± 1.3989.65 ± 1.1391.89 ± 0.8695.77 ± 1.08
AA78.20 ± 1.0649.60 ± 3.2988.46 ± 1.1783.14 ± 1.1194.44 ± 1.82
K53.97 ± 0.5851.04 ± 1.0389.62 ± 2.5489.12 ± 0.2698.33 ± 1.25
122.89 ± 1.091.33 ± 7.3390.00 ± 1.0330.21 ± 30.093.77 ± 11.6
245.46 ± 5.0041.87 ± 3.0488.79 ± 2.8082.69 ± 0.2692.56 ± 4.87
326.69 ± 2.6130.91 ± 8.2887.18 ± 7.2475.93 ± 1.2690.06 ± 4.53
422.79 ± 9.721.17 ± 3.2583.17 ± 5.5289.11 ± 1.1296.84 ± 4.89
537.71 ± 6.6769.79 ± 2.1386.75 ± 2.5579.28 ± 1.3495.65 ± 1.95
689.57 ± 1.7191.78 ± 0.7889.08 ± 3.0692.82 ± 0.3296.95 ± 0.96
739.54 ± 11.419.85 ± 7.5969.89 ± 29.739.69 ± 2.1391.48 ± 24.0
887.46 ± 2.1587.84 ± 3.1585.25 ± 2.4096.22 ± 0.3188.11 ± 3.09
951.81 ± 19.040.00 ± 0.0048.0 ± 49.022.00 ± 2.0595.72 ± 8.38
1067.46 ± 1.9163.53 ± 1.2490.47 ± 6.8787.28 ± 0.8995.30 ± 2.86
1190.56 ± 3.4973.88 ± 4.3394.57 ± 5.0395.21 ± 0.2397.94 ± 3.29
1254.14 ± 5.5638.46 ± 3.8576.47 ± 5.1692.77 ± 3.3792.56 ± 3.44
1334.47 ± 7.1783.02 ± 1.2297.26 ± 5.2949.93 ± 3.5699.89 ± 0.87
1484.32 ± 8.9587.94 ± 2.5999.16 ± 2.2292.89 ± 1.3795.89 ± 2.57
1548.75 ± 5.1247.64 ± 4.5691.00 ± 7.4996.76 ± 2.9893.74 ± 2.65
1634.60 ± 34.1297.38 ± 1.9497.89 ± 3.8699.11 ± 2.6795.89 ± 4.98