Research Article

A Novel Deep Learning Network and Its Application for Pulmonary Nodule Segmentation

Table 1

Parameters in each layer.

LayersSize of feature mapSize/step of convolution

Input64 × 64
Dense connection64 × 64[3 × 3 Conv-64] × 2
Max pooling32 × 322 × 2/2
Dense connection32 × 32[3 × 3 Conv-96] × 2
Max pooling16 × 162×2/2
Dense connection16 × 16[3 × 3 Conv-128] × 2
Max pooling8 × 82 × 2/2
Dense connection8 × 8[3 × 3 Conv-256] × 2
Max pooling4 × 42 × 2/2
Dense connection4 × 4[3 × 3 Conv-512] × 2
Max pooling8 × 82 × 2/2
Dense connection8 × 8[3 × 3 Conv-256] × 2
Max pooling16 × 162 × 2/2
Dense connection16 × 16[3 × 3 Conv-128] × 2
Max pooling32 × 322 × 2/2
Dense connection32 × 32[3 × 3 Conv-96] × 2
Max pooling64 × 642 × 2/2
Dense connection64 × 64[3 × 3 Conv-64] × 2
Max pooling64 × 641 × 1 Conv