Research Article

Evolutionary Game and Simulation of Green Housing Market Subject Behavior in China

Table 2

Eigenvalues of the Jacobian matrix and local stability judgment of equilibrium point.

Equant equationEigenvalues of the Jacobian matrixStability conclusionCondition
λ1, λ2, λ3Real component symbol

E1[0, 0, 0]AQ − AP − CZ, φSZ1 + ηSZ2 − AZ, G1 − D1(×, −, ×)Stable point
E2[0, 0, 1]θD2 + AQ − AP − CZ, (1 − θ)D2 + φSZ1 + ηSZ2 − AZ, D1 − G1(×, +, ×)Instable point
E3[1, 0, 0]CZ + AP − AQ, φSZ1 + ηSZ2 − AZ, G1 − D1 − θD2(×, −, ×)Stable point
E4[0, 1, 0]AQ + AP + AZ − CZ, AZ − φSZ1 − ηSZ2, G1 − D1 − (1 − θ)D2(+, +, −)Instable point
E5[1, 1, 0]CZ − AP − AZ − AQ, AZ − φSZ1 − ηSZ2, G1 − D1 − D2(−, −, +)Instable point
E6[0, 1, 1]θD2+AQ + AP + AZ − CZ, AZ − φSZ1 − ηSZ2 − (1 − θ)D2, (1 − θ)D2 + D1 − G1(+, −, −)Instable point
E7[1, 0, 1]CZ + AP − θD2 − AQ, (1 − θ)D1 + φSZ1 + ηSZ2 − AZ, θD2+D1 − G1(+, +, −)Instable point
E8[1, 1, 1]CZ − AZ − AP − θD2 − AQ, AZ − φSZ1 − ηSZ2 − (1 − θ)D2, D2 + D1 − G1(−, −, ×)Stable point

Note. x means the symbol is uncertain, ① AQ − AP − CZ < 0, G1 − D1 < 0; ② CZ + AP − AQ < 0, G1 − D1 − θD2 < 0; ③ D2 + D1 − G1 < 0.