Research Article
Deep Transfer Learning for Question Classification Based on Semantic Information Features of Category Labels
Table 3
The accuracy of the transfer learning classifier in the target domain question classification (%).
| Model | A->B | A->C | A->D | B->E | B->A | AVG |
| AVG-T | 51.16 | 52.39 | 49.17 | 77.60 | 55.89 | 57.24 |
| Traditional transfer | TCA | 55.02 | 51.42 | 49.02 | 75.36 | 57.14 | 57.59 | JDA | 55.44 | 55.00 | 49.28 | 73.60 | 63.76 | 59.42 |
| AVG-TT | 55.23 | 53.21 | 49.15 | 74.48 | 60.45 | 58.50 |
| Deep transfer | ULMFIT | 63.68 | 63.66 | 52.50 | 83.58 | 66.14 | 65.91 | Flair | 64.74 | 58.81 | 56.52 | 87.44 | 61.63 | 65.83 | XLNet | 74.80 | 71.90 | 64.20 | 87.30 | 70.90 | 73.82 | BERT | 77.30 | 77.20 | 68.40 | 92.40 | 74.90 | 78.04 | ALBERT | 73.64 | 77.08 | 65.62 | 90.70 | 72.21 | 75.85 | AVG-DT | 70.83 | 69.73 | 61.45 | 88.28 | 69.16 | 71.89 |
|
|