Research Article
[Retracted] Deep Learning Model for the Automatic Classification of White Blood Cells
Table 10
Confusion matrix parameters of DenseNet121 with all batch sizes.
| Batch size | Disease category | Precision (%) | Sensitivity (%) | Specificity (%) | Kohen kappa | Overall Accuracy (%) |
| 8 | E.P | 96.56 | 98.76 | 98.87 | 0.9845 | 95.56 | L.C | 100 | 100 | 100 | M.C | 100 | 100 | 100 | N.P | 98.79 | 96.66 | 99.59 |
| 16 | E.P | 96.78 | 98.51 | 98.89 | 0.9838 | 95.8 | L.C | 99.79 | 100 | 99.93 | M.C | 100 | 100 | 100 | N.P | 98.65 | 96.65 | 99.56 |
| 32 | E.P | 95.13 | 97.65 | 98.36 | 0.9752 | 95.01 | L.C | 99.99 | 100 | 99.96 | M.C | 99.89 | 100 | 99.96 | N.P | 97.63 | 94.89 | 99.22 |
| 64 | E.P | 94.21 | 95.81 | 98.01 | 0.9651 | 95.38 | L.C | 99.79 | 99.89 | 99.93 | M.C | 100 | 99.69 | 100 | N.P | 95.62 | 94.8 | 98.55 |
|
|