Research Article
[Retracted] Deep Learning Model for the Automatic Classification of White Blood Cells
Table 12
Comparison with existing state-of-art models.
| Study | Dataset source | No. of images | Technique used | Accuracy (%) |
| Boldú et al. [1] | ImageNet | 16450 | DenseNet121 | 93.6 | Baby and Devaraj [2] | ImageNet | 16450 | VGG16 | 82.35 | Yao et al. [3] | Kaggle | 12444 | VGG16 | 95.7 | Sen et al. [4] | HospitalSantiago de cube | 626 | InceptionV3 | 91 | Sheng et al. [7] | MS COCO | 1673 | ResNet50 | 75.71 | Patil et al. [8] | Kaggle | 12444 | Xception + LSTM | 95.89 | Özyurt [9] | Kaggle | 12444 | AlexNet | 95.29 | Acevedo et al. [10] | Hospital clinic of barcelona | 17092 | VGG16 | 96.2 | Sharma et al. [11] | Kaggle | 12444 | LeNet | 87.93 | Huang et al. [12] | LCTFS | 10000 | MGCNN | 97.65 | Proposed methodology | Kaggle | 12444 | DenseNet121 | 98.84 |
|
|