Research Article
A Semisupervised Majority Weighted Vote Antiphishing Attacks IDS for the Education Industry
| Model | Accuracy | Auc | Recall | Prec. | F1 | Kappa | MCC | TT (sec) |
| Voting naive bayes positive | 0.9314 | 0.9982 | 0.9292 | 0.9320 | 0.9312 | 0.8722 | 0.8871 | 2.339 | Light gradient boosting machine | 0.8949 | 0.9777 | 0.8770 | 0.8970 | 0.8941 | 0.8197 | 0.8218 | 0.244 | Extreme gradient boosting | 0.8942 | 0.9759 | 0.8745 | 0.8976 | 0.8935 | 0.8187 | 0.8211 | 15.896 | CatBoost classifier | 0.8926 | 0.9763 | 0.8710 | 0.8950 | 0.8921 | 0.8154 | 0.8172 | 4.328 | Random forest classifier | 0.8918 | 0.9739 | 0.8685 | 0.8961 | 0.8918 | 0.8145 | 0.8169 | 0.562 | Gradient boosting classifier | 0.8864 | 0.9747 | 0.8635 | 0.8914 | 0.8861 | 0.8053 | 0.8082 | 0.665 | SVM - radial kernel | 0.8726 | 0.9498 | 0.8388 | 0.8765 | 0.8716 | 0.7806 | 0.7832 | 0.387 | k-Neighbors classifier | 0.8687 | 0.9494 | 0.8336 | 0.8700 | 0.8666 | 0.7727 | 0.7753 | 0.128 | MLP classifier | 0.7988 | 0.8728 | 0.8076 | 0.7877 | 0.7541 | 0.7719 | 0.7056 | 6.322 |
|
|