Research Article
Fusion Attention Mechanism for Foreground Detection Based on Multiscale U-Net Architecture
Table 3
Complete results of the AMU-Net on CDnet-2014 datasets.
| Category | Precision | Recall | Specificity | FNR | FPR | PWC | F-measure |
| PTZ | 0.9907 | 0.9628 | 0.9999 | 0.0372 | 0.0001 | 0.0285 | 0.9759 | Bad Weather | 0.9897 | 0.9853 | 0.9998 | 0.0147 | 0.0002 | 0.0425 | 0.9875 | Baseline | 0.9970 | 0.9903 | 0.9999 | 0.0097 | 0.0001 | 0.0328 | 0.9936 | Camera Jitter | 0.9937 | 0.9889 | 0.9997 | 0.0111 | 0.0003 | 0.0679 | 0.9913 | Dynamic Bg | 0.9965 | 0.9864 | 0.9999 | 0.0136 | 0.0001 | 0.0145 | 0.9914 | Intermitt | 0.9957 | 0.9805 | 0.9997 | 0.0195 | 0.0003 | 0.1613 | 0.9879 | Low Framerate | 0.9150 | 0.8921 | 0.9998 | 0.1079 | 0.0002 | 0.0475 | 0.9030 | Night Videos | 0.9860 | 0.9701 | 0.9997 | 0.0299 | 0.0003 | 0.0934 | 0.9779 | Shadow | 0.9922 | 0.9921 | 0.9996 | 0.0079 | 0.0004 | 0.0657 | 0.9921 | Thermal | 0.9907 | 0.9854 | 0.9995 | 0.0146 | 0.0005 | 0.0842 | 0.9880 | Turbulence | 0.9876 | 0.9630 | 0.9999 | 0.0370 | 0.0001 | 0.0256 | 0.9751 | Overall | 0.9850 | 0.9724 | 0.9998 | 0.0276 | 0.0002 | 0.0603 | 0.9785 |
|
|