Research Article
Fusion Attention Mechanism for Foreground Detection Based on Multiscale U-Net Architecture
Table 6
F-measure comparison of different methods on CDnet-2014 dataset.
| Method | PTZ | badWeat | Baseline | cameraJit | dynaBg | Intermit | lowFrame | nightVid | Shadow | Thermal | Turbul | Overall |
| AMU-Net_M1 | 0.9684 | 0.9865 | 0.9936 | 0.9884 | 0.9909 | 0.9897 | 0.9603 | 0.9733 | 0.9928 | 0.9898 | 0.9764 | 0.9827 | AMU-Net_M2 | 0.9759 | 0.9829 | 0.9941 | 0.9873 | 0.9913 | 0.9888 | 0.9596 | 0.9741 | 0.9930 | 0.9900 | 0.9754 | 0.9830 | AMU-Net | 0.9759 | 0.9875 | 0.9936 | 0.9913 | 0.9914 | 0.9879 | 0.9030 | 0.9779 | 0.9921 | 0.9880 | 0.9751 | 0.9785 | CascadeCNN [28] | 0.9344 | 0.9451 | 0.9786 | 0.9758 | 0.9658 | 0.8505 | 0.8804 | 0.8926 | 0.9593 | 0.8958 | 0.9215 | 0.9272 | SuBSENSE [21] | 0.3476 | 0.8619 | 0.9503 | 0.8152 | 0.8177 | 0.6569 | 0.6445 | 0.5599 | 0.8986 | 0.8171 | 0.7792 | 0.7408 | FTSG [23] | 0.3241 | 0.8228 | 0.9330 | 0.7513 | 0.8792 | 0.7891 | 0.6259 | 0.5130 | 0.8535 | 0.7768 | 0.7127 | 0.7283 | GMM [14] | 0.1046 | 0.7406 | 0.8382 | 0.5670 | 0.6328 | 0.5325 | 0.5065 | 0.3960 | 0.7322 | 0.6548 | 0.4169 | 0.5566 |
|
|