Research Article

Photovoltaic Power Generation Forecasting Using a Novel Hybrid Intelligent Model in Smart Grid

Table 3

Comparative study with literature.

ModelMSERMSEMAPE (%)MAERAuthors

ANN model90.80789.529395.653.2540.8511[28]
Artificial neural networks and an analog ensemble85.2369.232392.323.1220.8724[31]
Wavelet transform model65.25858.078275.442.8550.9133[32]
Genetic algorithm optimized hidden Markov model52.69827.635865.472.5440.9375[42]
Multidirectional search optimization algorithm47.54426.895261.022.1420.9524[43]
Multiheaded convolutional neural networks39.25156.265154.251.8570.9755[44]
ANFIS model34.69345.890144.231.5660.9814[45]
ELM model30.48365.521231.050.9824[47]
ANFIS-PSO model17.22254.152526.171.3560.9857[48]
Nonlinear autoregressive neural network0.94[49]
The hybrid ACO and PSO model3.513[50]
ANN-SVM-PSO model14.97213.86933.320.8670.9984Writers