Research Article
A Data-Driven Model for Automated Chinese Word Segmentation and POS Tagging
Table 3
Parameters of the improved AlexNet.
| Layer | Convolution kernel size | Step length | Number of cores |
| Convolutional layer 1 | 11 × 11 × 3 | 4 | 96 | Pooling layer 1 | 1 × 3 × 3 × 1 | 2 | — | Convolutional layer 2 | 5 × 5 × 48 | 1 | 256 | Pooling layer 2 | 1 × 3 × 3 × 1 | 2 | — | Convolution layer 3 | 3 × 3 × 384 | 1 | 256 | Convolutional layer 4 | 3 × 64 × 384 | 1 | 384 | Convolutional layer 5 | 3 × 3 × 256 | 1 | 384 | Pooling layer 5 | 1 × 3 × 3 × 1 | 2 | — | Fully connected layer 6 | 32 × 256 | — | 256 | ReLU6 | — | — | 384 | Dropout layer | — | — | — | Fully connected layer 7 | 32 × 256 | — | 256 | ReLU7 | — | — | 256 | Dropout layer | — | — | — | Fully connected layer 8 | 256 × 2 | — | 2 | Prob | Softmax | — | — | Output | — | — | — |
|
|