Research Article

Explainable Artificial Intelligence-Based IoT Device Malware Detection Mechanism Using Image Visualization and Fine-Tuned CNN-Based Transfer Learning Model

Table 4

Classwise performance.

Dataset 2
FamiliesPrecisionRecallF1-score

Addisplay0.910.890.9
Addisplay + + adware0.890.910.9
Adload0.920.920.92
Adsware0.90.90.9
Adware + + adware0.90.910.91
Adware + + grayware + + virus0.880.880.88
Adware + + virus0.910.90.9
Adwareare0.920.920.92
Backdoor0.920.920.92
Banker + + trojan0.940.910.92
Click0.920.920.92
Clicker0.880.910.9
Clicker + + trojan0.890.870.88
Clickfraud + + riskware0.910.910.91
Exploit0.860.870.86
Fakeangry0.880.90.89
Fakeapp0.940.90.92
Fakeapp + + trojan0.960.950.95
Fakeinst + + trojan0.960.960.96
Average0.910.910.91

Dataset 1
Benign0.990.990.99
Malware0.990.990.99
Average0.990.990.99