Research Article
Efficient E-Mail Spam Detection Strategy Using Genetic Decision Tree Processing with NLP Features
Algorithm 3
Natural Language Processing.
start | for each m in content: | pCount = Σ (no. of paragraphs) | Tokenize m by paragraph | FakeRank = 0 | end for | for each paragraph in m: | qScore = Σ (no. of paragraphs) | if qScore > 0 | for each quoteset | quote_q1 classify.randomforest (quoteset_attribution_space, m) | end if | end for | if quote_q1 | A-score = A-score + 1 | else | A-score = A-score − 1 | return A-score | end if | end for | FakeRank = FakeRank + A-score | if FakeRank ≥ 0 | mLabel = real | end if | if FakeRank < 0 | mLabel = fake | end if | end for | end |
|