Research Article

Differentiable Network Pruning via Polarization of Probabilistic Channelwise Soft Masks

Table 2

Comparison results on the CIFAR10 dataset with VGG16, ResNet32, ResNet56, and ResNet110. Acc is the accuracy drop of the pruned model compared to the baseline model. FLOPs represent the pruning rate of FLOPs.

NetworkMethodBaseline acc (%)PrunedAcc (%)FLOPs (%)

VGG-16HRank [11]93.9692.341.6265.30
SCP [14]93.8593.790.0666.23
PPSM (ours)93.7293.78−0.0666.20

ResNet32LFPC [46]92.6392.120.5152.60
Wang et al. [47]93.1893.27−0.0949.00
PPSM (ours)93.1993.31−0.1253.27
LRF [27]92.4992.54−0.0562.00
MainDP [15]92.6692.150.5163.20
PPSM (ours)93.1993.28−0.0964.35

ResNet56Zhuang et al. [28]93.8093.83−0.0347.00
HRank [11]93.2693.170.0950.00
LFPC [46]93.5993.340.2552.90
DMC [13]93.6293.69−0.0750.00
SRR-GR [48]93.3893.75−0.3753.80
SCP [14]93.6993.230.4651.50
DPFPS [49]93.8193.200.6152.86
Wang et al. [47]93.6993.76−0.0750.00
PPSM (ours)93.4493.57−0.1354.60
HRank [11]93.2690.722.5474.10
LRF-60 [27]93.4593.190.2673.90
PPSM (ours)93.4493.220.2275.62

ResNet110HRank [11]93.5092.650.8568.60
LFPC [46]93.6893.79−0.1160.30
LRF [27]93.7694.34−0.5862.60
PPSM (ours)93.6093.83-0.2368.70

The bold values are given to highlight the best-performing method in each performance metric.