Research Article

Differentiable Network Pruning via Polarization of Probabilistic Channelwise Soft Masks

Table 3

Comparison results of ResNet50 and MobileNet v2 on ImageNet. Pruned top-1 and pruned top-5 denote the top-1 and top-5 accuracy after the pruning. Top-1 and top-5 denote the accuracy drop of the pruned model when compared to the baseline model.

NetworkMethodPruned top-1(%)Top-1 (%)Pruned top-5(%)Top-5 (%)FLOPs (%)

ResNet50GAL [16]71.804.3590.822.0555.01
Zhuang et al. [28]75.630.5254.00
DMCP [18]76.200.4046.34
DMC [13]75.350.8092.490.3855.00
HRank [11]74.981.1792.330.5443.77
GBN [17]75.180.6792.410.2555.06
SRR-GR [48]75.111.0292.350.5155.10
SCP [14]75.270.6292.300.6854.30
SCOP [50]75.260.8992.530.3454.60
LRF [27]75.710.5092.800.0256.40
DPFPS [49]75.550.6092.540.3346.20
PPSM (ours)75.780.3592.830.0353.07
GAL [16]69.886.2789.753.1261.37
HRank [11]71.984.1791.011.8662.10
CHIP [51]75.260.8992.530.3462.80
PPSM (ours)75.430.7092.540.3265.91
GAL [16]69.316.8489.123.7572.86
HRank [11]69.107.0589.583.2976.04
DMCP [18]74.402.2073.17
CHIP [51]73.302.8591.481.3976.70
PPSM (ours)74.591.5492.300.5672.43

MobileNet v2AMC [7]70.801.0027.00
Metapruning [52]71.200.8027.00
DPFPS [49]71.100.9024.89
PPSM (ours)71.430.4589.920.3728.69

The bold values are given to highlight the best-performing method in each performance metric.