Computational Intelligence and Neuroscience / 2022 / Article / Tab 3 / Research Article
Differentiable Network Pruning via Polarization of Probabilistic Channelwise Soft Masks Table 3 Comparison results of ResNet50 and MobileNet v2 on ImageNet. Pruned top-1 and pruned top-5 denote the top-1 and top-5 accuracy after the pruning. Top-1
and top-5
denote the accuracy drop of the pruned model when compared to the baseline model.
Network Method Pruned top-1(%) Top-1 (%) Pruned top-5(%) Top-5 (%) FLOPs (%) ResNet50 GAL [16 ] 71.80 4.35 90.82 2.05 55.01 Zhuang et al. [28 ] 75.63 0.52 — — 54.00 DMCP [18 ] 76.20 0.40 — — 46.34 DMC [13 ] 75.35 0.80 92.49 0.38 55.00 HRank [11 ] 74.98 1.17 92.33 0.54 43.77 GBN [17 ] 75.18 0.67 92.41 0.25 55.06 SRR-GR [48 ] 75.11 1.02 92.35 0.51 55.10 SCP [14 ] 75.27 0.62 92.30 0.68 54.30 SCOP [50 ] 75.26 0.89 92.53 0.34 54.60 LRF [27 ] 75.71 0.50 92.80 0.02 56.40 DPFPS [49 ] 75.55 0.60 92.54 0.33 46.20 PPSM (ours) 75.78 0.35 92.83 0.03 53.07 GAL [16 ] 69.88 6.27 89.75 3.12 61.37 HRank [11 ] 71.98 4.17 91.01 1.86 62.10 CHIP [51 ] 75.26 0.89 92.53 0.34 62.80 PPSM (ours) 75.43 0.70 92.54 0.32 65.91 GAL [16 ] 69.31 6.84 89.12 3.75 72.86 HRank [11 ] 69.10 7.05 89.58 3.29 76.04 DMCP [18 ] 74.40 2.20 — — 73.17 CHIP [51 ] 73.30 2.85 91.48 1.39 76.70 PPSM (ours) 74.59 1.54 92.30 0.56 72.43 MobileNet v2 AMC [7 ] 70.80 1.00 — — 27.00 Metapruning [52 ] 71.20 0.80 — — 27.00 DPFPS [49 ] 71.10 0.90 — — 24.89 PPSM (ours) 71.43 0.45 89.92 0.37 28.69
The bold values are given to highlight the best-performing method in each performance metric.