Research Article

A Victim-Based Framework for Telecom Fraud Analysis: A Bayesian Network Model

Table 5

Bayesian network node table description.

CaseBayesian nodesDescription

A 1(A) MarriageMarriage = married
A 2(A) MarriageMarriage = unmarried
B 1(B) SexSex = male
B 2(B) SexSex = female
C 1(C) AgeAge = young
C 2(C) AgeAge = middle age
C 3(C) AgeAge = old age
D 1(D) WorkWork = company
D 2(D) WorkWork = school
D 3(D) WorkWork = selfemployed person
D 4(D) WorkWork = government
E 1(E) KnowledgeKnowledge = high
E 2(E) KnowledgeKnowledge = low
F 1(F) Suspect during cheatSuspect during cheat = yes
F 2(F) Suspect during cheatSuspect during cheat = no
G 1(G) Cheat typeCheat type = identity fraud
G 2(G) Cheat typeCheat type = shopping fraud
G 3(G) Cheat typeCheat type = inducement fraud
G 4(G) Cheat typeCheat type = fictional dangerous situation fraud
G 5(G) Cheat typeCheat type = daily consumption fraud
G 6(G) Cheat typeCheat type = phishing and Trojan virus fraud
G 7(G) Cheat typeCheat type = other types of fraud
H 1(H) Communicate typeCommunicate type = phone
H 2(H) Communicate typeCommunicate type = message
H 3(H) Communicate typeCommunicate type = social software
I 1(I) Call the policeCall the police = yes
I 2(I) Call the policeCall the police = no
J 1(J) Property lossProperty loss = 0–1000
J 2(J) Property lossProperty loss = 1000–5000
J 3(J) Property lossProperty loss = 5000–20000
J 4(J) Property lossProperty loss = 20000–50000
J 5(J) Property lossProperty loss = 50000+