Research Article
Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification
Table 3
Within-subject classification accuracy_bcic iv 2a.
| Author | Algorithm | Accuracy (%) | A01 | A02 | A03 | A04 | A05 | A06 | A07 | A08 | A09 | Mean |
| Sakhavi S | FBCSP | 76.11 | 44.33 | 81.52 | 66.30 | 58.96 | 50.75 | 85.69 | 77.35 | 75.63 | 68.0 | R. T. Schirr | Deep ConvNet | 69.75 | 45.44 | 87.46 | 63.85 | 52.04 | 53.39 | 87.46 | 83.46 | 83.99 | 69.6 | Shallow ConvNet | 81.60 | 45.49 | 88.54 | 68.06 | 60.42 | 51.74 | 88.54 | 81.25 | 79.51 | 71.7 |
| V. J. Lawhern | EEGNet-4, 2 | 80.56 | 48.96 | 87.50 | 64.93 | 62.50 | 58.68 | 87.85 | 77.78 | 81.25 | 72.2 | EEGNet-8, 2 | 85.76 | 43.06 | 92.36 | 62.50 | 63.19 | 62.85 | 83.33 | 73.96 | 76.39 | 72.5 |
| Ours | Ours | 91.32 | 44.10 | 90.97 | 67.71 | 60.07 | 56.25 | 89.58 | 82.99 | 79.51 | 73.7 |
|
|