Research Article
Cybercrime: Identification and Prediction Using Machine Learning Techniques
Table 1
Training data for the SVM classifier.
| Sl. no. | Training dataset (average) | SVM Struct. Support Vectors | SVM Struct. Scale Data Shift | SVM Struct. Scale Data Scale Factor | SVM Struct. Alpha | SVM Struct. Bias | SVM Struct. Support Vectorization | Mean-squared error for regression using 10-fold cross-validation: | Misclassification rate using stratified 10-fold cross-validation: | Confusion matrix using stratified 10-fold cross-validation: | cvMSE | cvMCR | cfMat |
| 1 | 7.850 | 0.314 | −7.102 | 0.260 | 0.625 | 1.958 | 6.000 | 0.003 | 0.150 | 0 1 0 12 69 2 0 0 16 | 2 | 8.040 | 0.403 | −7.102 | 0.260 | 0.625 | 1.958 | 10.000 | 0.003 | 0.150 | 3 | 8.000 | 0.379 | −7.102 | 0.260 | 0.625 | 1.958 | 11.000 | 0.003 | 0.150 | 4 | 7.750 | 0.317 | −7.102 | 0.260 | 0.625 | 1.958 | 13.000 | 0.003 | 0.150 | 5 | 7.730 | 0.462 | −7.102 | 0.260 | 0.625 | 1.958 | 14.000 | 0.003 | 0.150 | 6 | 8.310 | 0.384 | −7.102 | 0.260 | 0.625 | 1.958 | 15.000 | 0.003 | 0.150 | 7 | 7.780 | 0.743 | −7.102 | 0.260 | 0.625 | 1.958 | 49.000 | 0.003 | 0.150 | 8 | 7.670 | 0.936 | −7.102 | 0.260 | −1.250 | 1.958 | 50.000 | 0.003 | 0.150 | 9 | 8.220 | 0.749 | −7.102 | 0.260 | 0.625 | 1.958 | 51.000 | 0.003 | 0.150 | 10 | 8.650 | 0.837 | −7.102 | 0.260 | −2.500 | 1.958 | 52.000 | 0.003 | 0.150 | 11 | 8.560 | 0.533 | −7.102 | 0.260 | 0.625 | 1.958 | 53.000 | 0.003 | 0.150 | 12 | 8.170 | 0.689 | −7.102 | 0.260 | 0.625 | 1.958 | 54.000 | 0.003 | 0.150 | 13 | 8.320 | 0.754 | −7.102 | 0.260 | 0.625 | 1.958 | 55.000 | 0.003 | 0.150 | 14 | 8.880 | 0.790 | −7.102 | 0.260 | −2.500 | 1.958 | 56.000 | 0.003 | 0.150 | 15 | 8.580 | 0.319 | −7.102 | 0.260 | 0.625 | 1.958 | 62.000 | 0.003 | 0.150 | 16 | 8.180 | 0.907 | −7.102 | 0.260 | −2.500 | 1.958 | 97.000 | 0.003 | 0.150 | 17 | 7.320 | 0.561 | −7.102 | 0.260 | 0.625 | 1.958 | 98.000 | 0.003 | 0.150 | 18 | 7.230 | 0.343 | −7.102 | 0.260 | 0.625 | 1.958 | 100.00 | 0.003 | 0.150 |
|
|