Research Article

Cybercrime: Identification and Prediction Using Machine Learning Techniques

Table 1

Training data for the SVM classifier.

Sl. no.Training dataset (average)SVM Struct. Support VectorsSVM Struct. Scale Data ShiftSVM Struct. Scale Data Scale FactorSVM Struct. AlphaSVM Struct. BiasSVM Struct. Support VectorizationMean-squared error for regression using 10-fold cross-validation:Misclassification rate using stratified 10-fold cross-validation:Confusion matrix using stratified 10-fold cross-validation:
cvMSEcvMCRcfMat

17.8500.314−7.1020.2600.6251.9586.0000.0030.1500 1 0
12 69 2
0 0 16
28.0400.403−7.1020.2600.6251.95810.0000.0030.150
38.0000.379−7.1020.2600.6251.95811.0000.0030.150
47.7500.317−7.1020.2600.6251.95813.0000.0030.150
57.7300.462−7.1020.2600.6251.95814.0000.0030.150
68.3100.384−7.1020.2600.6251.95815.0000.0030.150
77.7800.743−7.1020.2600.6251.95849.0000.0030.150
87.6700.936−7.1020.260−1.2501.95850.0000.0030.150
98.2200.749−7.1020.2600.6251.95851.0000.0030.150
108.6500.837−7.1020.260−2.5001.95852.0000.0030.150
118.5600.533−7.1020.2600.6251.95853.0000.0030.150
128.1700.689−7.1020.2600.6251.95854.0000.0030.150
138.3200.754−7.1020.2600.6251.95855.0000.0030.150
148.8800.790−7.1020.260−2.5001.95856.0000.0030.150
158.5800.319−7.1020.2600.6251.95862.0000.0030.150
168.1800.907−7.1020.260−2.5001.95897.0000.0030.150
177.3200.561−7.1020.2600.6251.95898.0000.0030.150
187.2300.343−7.1020.2600.6251.958100.000.0030.150