Research Article
Cybercrime: Identification and Prediction Using Machine Learning Techniques
Table 3
Performance metrics using the SVM classifier.
| Attribute | TP | TN | FP | FN | FAR | DR | ACC | Precision | Recall | Specificity | Sensitivity | FMI |
| 1 | 16 | 64 | 20 | 0 | 0.2381 | 1 | 0.8 | 0.23810 | 0.2 | 1 | 0.7619 | 0.6667 | 2 | 16 | 64 | 20 | 0 | 0.2381 | 1 | 0.8 | 0.23810 | 0.2 | 1 | 0.7619 | 0.6667 | 3 | 80 | 0 | 9 | 11 | 1.00 | 0.879 | 0.8 | 2.22222 | 0.2 | 0.8791 | 0.00 | 0.8889 | 4 | 80 | 0 | 16 | 4 | 1.00 | 0.952 | 0.8 | 1.25000 | 0.2 | 0.9523 | 0.00 | 0.8909 | 5 | 80 | 0 | 0 | 20 | 0.00 | 0.8 | 0.8 | 0.00000 | 0.2 | 0.8 | 0.00 | 0.8944 | 6 | 80 | 0 | 0 | 20 | 0.00 | 0.8 | 0.8 | 0.00000 | 0.2 | 0.8 | 0.00 | 0.8944 | 7 | 80 | 0 | 0 | 20 | 0.00 | 0.8 | 0.8 | 0.00000 | 0.2 | 0.8 | 0.00 | 0.8944 | 8 | 80 | 0 | 0 | 20 | 0.00 | 0.8 | 0.8 | 0.00000 | 0.2 | 0.8 | 0.00 | 0.8944 | 9 | 33 | 47 | 20 | 0 | 0.298 | 1 | 0.8 | 0.29851 | 0.2 | 1 | 0.7014 | 0.7891 | 10 | 80 | 0 | 0 | 20 | 0.00 | 0.8 | 0.8 | 0.00000 | 0.2 | 0.8 | 0.0000 | 0.8944 |
|
|