Research Article

An Empirical Analysis on the Impact of Innovation Network Structure on Crossover Innovation Performance of Emerging Technologies

Table 7

Results of negative binomial regression analysis for crossover innovation performance.

VariableCrossover innovation performance (InnoP)
M1M2M3M4M5M6

Explanatory variable
Degree centrality (NRD)0.387
(0.178)
0.303
(0.179)
Structural hole (SH)0.057
(0.024)
0.043
(0.024)
Relationship intensity (NS)0.012
(0.003)
0.011
(0.003)
Network clustering (NC)−0.006
(0.002)
−0.005
(0.002)

Control variable
Technological resource type (TRT)0.120
(0.003)
0.119
(0.003)
0.117
(0.003)
0.115
(0.003)
0.120
(0.003)
0.112
(0.003)
Year (NY)0.065
(0.010)
0.084
(0.013)
0.065
(0.010)
0.068
(0.010)
0.066
(0.010)
0.083
(0.013)
C−131.6
(19.32)
−169.5
(26.08)
−130.3
(19.32)
−137.5
(19.40)
−132.1
(19.36)
−166.4
(26.14)
α0.2620.2590.2600.2560.2620.253
Log likelihood−2437.456−2435.099−2434.580−2429.937−2437.369−2426.404
LR chi^22001.012005.732006.762016.052001.192023.12
Pseudo R^20.2910.29170.29190.29320.29160.2942
Likelihood-ratio test of α = 04427.524320.174419.23955.64420.273864.03

Note. ; ; .