Research Article

Prediction Model of Stress Intensity Factor of Circumferential Through Crack in Elbow Based on Neural Network

Table 1

Network connection weights and thresholds.

WeightHidden layer node jWeightHidden layer node j
12345678910

Input node i4.3785−3.17922.4674−1.1211−3.8841Input node i1.0034−0.9732−3.86993.6769−3.2183
1.2491−3.31752.80064.23751.65644.07522.56483.7926−0.3202−3.467
−2.9388−2.87313.9293.1867−3.39683.42844.6736−0.08613.9681−2.644
Output node j0.43830.5581−0.63420.5707−0.9485Output node j−0.18520.8129−0.33910.8390.3792
Threshold b−5.41925.2291−5.03894.84884.6586Threshold b−4.46854.27834.0882−3.8983.7079
WeightHidden layer node jWeightHidden layer node j
11121314151617181920
Input node i−3.5057−0.437−0.75083.71642.6689Input node i3.09−2.321−2.19682.95015.1046
−2.5833−0.5516−5.23122.75783.2876−1.82044.71422.07772.2599−1.1519
−3.2256−5.37331.19932.81973.3818−4.06281.3257−4.49723.94431.4087
Output node j0.90530.71690.644−0.0452−0.2266Output node j0.90530.71690.644−0.0452−0.2266
Threshold b3.51773.32763.1374−2.9473−2.7572Threshold b3.51773.32763.1374−2.9473−2.7572
WeightHidden layer node jWeightHidden layer node j
21222324252627282930
Input node i−3.45342.3038−1.24024.72593.7538Input node i−2.95383.49273.542−4.073.6032
2.4541−4.50690.13242.2871−3.8169−4.37381.10062.3476−2.422.0621
−3.3792−1.93625.2738−1.3426−0.84141.2301−3.99473.3632−2.6357−3.4832
Output node j0.4937−0.8105−0.80950.81940.5549Output node j−0.7003−0.7726−0.55650.4276−0.3155
Threshold b1.6163−1.42611.236−1.0458−0.8557Threshold b0.6655−0.4754−0.28520.09510.0951
WeightHidden layer node jWeightHidden layer node j
31323334353637383940
Input node i−1.98913.3707−3.0278−3.6975−1.3709Input node i2.94964.0848−0.5431−1.8461−3.8839
1.80962.1345−3.16013.9596−5.2084−1.81932.98994.0422−3.22752.9865
4.7053.66743.1960.1349−0.60094.1663−1.93463.5684−3.9425−2.316
Output node j−0.53230.309−0.4771−0.10080.3014Output node j−0.6356−0.06630.06560.2326−0.1816
Threshold b−0.28520.4754−0.6655−0.8557−1.0458Threshold b1.2361.4261−1.6163−1.8064−1.9966
WeightHidden layer node jWeightHidden layer node j
41424344454647484950
Input node i−4.4054−4.09024.1267−0.87753.8594Input node i−3.8526−0.58740.9973−4.62470.6137
2.99593.5286−1.87152.50353.3894−3.04952.22124.88281.2335−3.7087
−0.99260.43292.9725−4.7255−1.72762.2864.9081−2.12872.5414−3.9035
Output node j−0.1780.35710.861−0.91130.8466Output node j−0.1699−0.9944−0.3267−0.55290.1583
Threshold b−2.1867−2.37692.567−2.75722.9473Threshold b−3.1374−3.32763.5177−3.70793.898
WeightHidden layer node jWeightHidden layer node jOutput node
51525354555657581
Input node i2.2577−2.41673.017−5.34842.6632Input node i−2.6809−1.3532−4.0905−0.1685
3.62441.93880.1105−0.67344.4392−2.8943−4.034−1.7712
3.33694.44624.5004−0.55591.60273.7154−3.3562−3.0819
Output node j0.5577−0.4144−0.55420.09680.728Output node j−0.08690.4252−0.3411
Threshold b4.0882−4.27834.4685−4.65864.8488Threshold b−5.0389−5.2291−5.4192