Research Article

SCU-Net: Semantic Segmentation Network for Learning Channel Information on Remote Sensing Images

Table 3

Labeling results of SCU-net-102-A and DFCN121C for each class on the GF-2 dataset.

ModelCultivated landForest landOthersWater areaBuildingRoad

Predict pixels22288550922232351990631154758229825851830985

Predict pixels (TP)SCU-net-102-A1516134689547666113169111839178862701517840
DFCN121C1488380589361908117344112552761999480289870

Predict pixels (FP)SCU-net-102-A71272042675569858943636652096315313145
DFCN121C74047452861327817192923069831051541115

PrecisionSCU-net-102-A68.02%97.10%43.15%96.85%70.29%82.90%
DFCN121C66.78%96.90%58.95%97.47%67.04%84.17%

RecallSCU-net-102-A82.88%93.41%50.98%92.15%86.90%72.87%
DFCN121C83.20%93.16%50.11%90.71%86.89%70.87%

F1-scoreSCU-net-102-A0.7470.9520.4670.9440.7770.776
DFCN121C0.7410.9490.5410.9390.7570.769