Research Article
A Novel Minimum Spanning Tree Clustering Algorithm Based on Density Core
Table 2
Parameter settings of each clustering method in the ten synthetic datasets.
| Datasets | Kmeans | DBSCAN | DPC (%) | DCore | SNNDPC | LDP-MST | MST-DC |
| D1 | N = 3 | Eps = 0.5 Minpts = 5 | dc = 2 | r1 = 0.5; r2 = 0.25; R = 0.6; T1 = 30; Tn = 4 | K = 5 | N = 3 | − |
| D2 | N = 5 | Eps = 0.8 Minpts = 5 | dc = 2 | r1 = 0.5; r2 = 0.45; R = 0.5; T1 = 50; Tn = 15 | K = 4 | N = 5 | |
| D3 | N = 4 | Eps = 10 Minpts = 5 | dc = 2 | r1 = 14; r2 = 13; R = 15; T1 = 40; Tn = 8 | K = 10 | N = 4 | |
| D4 | N = 3 | Eps = 20 Minpts = 5 | dc = 2 | r1 = 20; r2 = 18; R = 20; T1 = 30; Tn = 8 | K = 10 | N = 3 | |
| D5 | N = 2 | Eps = 0.1 Minpts = 8 | dc = 2 | r1 = 0.3; r2 = 0.1; R = 0.2; T1 = 20; Tn = 5 | K = 5 | N = 2 | |
| D6 | N = 4 | Eps = 15 Minpts = 5 | dc = 2 | r1 = 20; r2 = 18; R = 21; T1 = 10; Tn = 6 | K = 10 | N = 4 | |
| D7 | N = 6 | Eps = 6 Minpts = 5 | dc = 2 | r1 = 14; r2 = 13; R = 14; T1 = 40; Tn = 8 | K = 5 | N = 6 | |
| D8 | N = 4 | Eps = 0.25 Minpts = 4 | dc = 2 | r1 = 0.4; r2 = 0.35; R = 0.5; T1 = 10; Tn = 5 | K = 10 | N = 4 | |
| D9 | N = 6 | Eps = 6 Minpts = 5 | dc = 2 | r1 = 15; r2 = 15; R = 15; T1 = 35; Tn = 15 | K = 15 | N = 6 | |
| D10 | N = 7 | Eps = 2 Minpts = 10 | dc = 2 | r1 = 1; r2 = 0.9; R = 2; T1 = 30; Tn = 10 | K = 15 | N = 7 | |
|
|