Research Article

A Novel Minimum Spanning Tree Clustering Algorithm Based on Density Core

Table 2

Parameter settings of each clustering method in the ten synthetic datasets.

DatasetsKmeansDBSCANDPC (%)DCoreSNNDPCLDP-MSTMST-DC

D1N = 3Eps = 0.5
Minpts = 5
dc = 2r1 = 0.5; r2 = 0.25; R = 0.6; T1 = 30; Tn = 4K = 5N = 3

D2N = 5Eps = 0.8
Minpts = 5
dc = 2r1 = 0.5; r2 = 0.45; R = 0.5; T1 = 50; Tn = 15K = 4N = 5

D3N = 4Eps = 10
Minpts = 5
dc = 2r1 = 14; r2 = 13; R = 15; T1 = 40; Tn = 8K = 10N = 4

D4N = 3Eps = 20
Minpts = 5
dc = 2r1 = 20; r2 = 18; R = 20; T1 = 30; Tn = 8K = 10N = 3

D5N = 2Eps = 0.1
Minpts = 8
dc = 2r1 = 0.3; r2 = 0.1; R = 0.2; T1 = 20; Tn = 5K = 5N = 2

D6N = 4Eps = 15
Minpts = 5
dc = 2r1 = 20; r2 = 18; R = 21; T1 = 10; Tn = 6K = 10N = 4

D7N = 6Eps = 6
Minpts = 5
dc = 2r1 = 14; r2 = 13; R = 14; T1 = 40; Tn = 8K = 5N = 6

D8N = 4Eps = 0.25
Minpts = 4
dc = 2r1 = 0.4; r2 = 0.35; R = 0.5; T1 = 10; Tn = 5K = 10N = 4

D9N = 6Eps = 6
Minpts = 5
dc = 2r1 = 15; r2 = 15; R = 15; T1 = 35; Tn = 15K = 15N = 6

D10N = 7Eps = 2
Minpts = 10
dc = 2r1 = 1; r2 = 0.9; R = 2; T1 = 30; Tn = 10K = 15N = 7