Research Article
Research on DUAL-ADGAN Model for Anomaly Detection Method in Time-Series Data
Table 2
Comparison of the performance of each anomaly detection model.
| Model | RealAdExchange-CPC | RealTraffic-SPEED | RealTraffic-TravelTime | Avg | Acc | Pre | Recall | F1 | Acc | Pre | Recall | F1 | Acc | Pre | Recall | F1 | F1 |
| K-means [17] | 0.737 | 0.407 | 0.73 | 0.523 | 0.857 | 0.474 | 0.6 | 0.529 | 0.863 | 0.64 | 0.666 | 0.653 | 0.568 | OC-SVM [20] | 0.876 | 0.571 | 0.834 | 0.678 | 0.892 | 0.588 | 0.667 | 0.625 | 0.887 | 0.611 | 0.785 | 0.687 | 0.663 | LOF [16] | 0.884 | 0.625 | 0.769 | 0.689 | 0.911 | 0.692 | 0.6 | 0.642 | 0.9 | 0.653 | 0.8 | 0.719 | 0.683 | IF [19] | 0.908 | 0.785 | 0.733 | 0.758 | 0.937 | 0.666 | 0.8 | 0.727 | 0.939 | 0.744 | 0.842 | 0.790 | 0.758 | LSTM-AE [22] | 0.906 | 0.75 | 0.774 | 0.761 | 0.938 | 0.785 | 0.734 | 0.758 | 0.883 | 0.633 | 0.679 | 0.655 | 0.725 | NSIBF [24] | 0.96 | 0.92 | 0.851 | 0.885 | 0.927 | 0.88 | 0.815 | 0.846 | 0.96 | 0.892 | 0.846 | 0.868 | 0.866 | Mad-GAN [29] | 0.915 | 0.72 | 0.75 | 0.735 | 0.946 | 0.846 | 0.734 | 0.786 | 0.932 | 0.783 | 0.763 | 0.773 | 0.765 | Fence-GAN [34] | 0.914 | 0.71 | 0.73 | 0.72 | 0.929 | 0.7857 | 0.688 | 0.734 | 0.94 | 0.848 | 0.737 | 0.789 | 0.748 | Tad-GAN [30] | 0.942 | 0.8 | 0.889 | 0.842 | 0.938 | 0.789 | 0.834 | 0.81 | 0.938 | 0.828 | 0.763 | 0.795 | 0.816 | DUAL-ADGAN | 0.962 | 0.848 | 0.967 | 0.903 | 0.949 | 0.818 | 0.9 | 0.857 | 0.96 | 0.845 | 0.926 | 0.883 | 0.881 |
|
|