Research Article
Research on Pedestrian Detection Algorithm Based on MobileNet-YoLo
Table 3
MobileNetv3 structural parameters.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1Input represents the shape change of each feature layer; 2Operator represents the block structure that each feature layer is about to experience; 3Exp size, 4Out represent the number of channels that rise in the inverse residual structure within the neck, and the number of channels in the feature layer at the time of input to the neck, respectively; 5SE represents whether the attention mechanism is introduced at this layer; 6NL represents the type of activation function, HS represents h-swish, and RE represents RELU; 7S represents the step length used for each block structure. |