Research Article
AdaBoost Ensemble Methods Using K-Fold Cross Validation for Survivability with the Early Detection of Heart Disease
Table 4
Ensemble classifiers, heterogeneous.
| Performance metrics | NB + AltDTree | NB + RF | AltDTree + RF | RF + RedEPTree | RF + CART | AltDTree + RedEPTree | AltDTree + CART |
| TTBM (sec) | 30.03 | 32.05 | 398.12 | 7.89 | 7.34 | 357.77 | 598.02 | Accuracy (%) | 76.45 | 76.05 | 70.12 | 85.45 | 86.29 | 74.49 | 71.29 | MAE | 0.42 | 0.43 | 0.37 | 0.35 | 0.34 | 0.37 | 0.41 | RMSE | 0.42 | 0.39 | 0.49 | 0.36 | 0.36 | 0.37 | 0.42 | RAE | 99.23 | 92.23 | 80.12 | 71.01 | 70.89 | 73.23 | 89.23 | RRSE | 98.23 | 97.49 | 101.22 | 91.29 | 90.12 | 93.37 | 99.34 | F1-score | 0.74 | 0.75 | 0.68 | 0.84 | 0.85 | 0.73 | 0.69 |
|
|