Research Article
Multimodal Feature Fusion Based Hypergraph Learning Model
Table 2
Classification performance of single modal hypergraph model.
| Datasets | Feature extraction method | Accuracy | Precision | Recall | F1 |
| Cat & Dog | PHA | 0.552 | 0.554 | 0.574 | 0.563 | SIFT | 0.658 | 0.660 | 0.663 | 0.661 | HSIFT | 0.669 | 0.674 | 0.678 | 0.675 | VGG | 0.958 | 0.960 | 0.957 | 0.958 | ResNet | 0.960 | 0.961 | 0.958 | 0.959 | HVGG | 0.963 | 0.962 | 0.963 | 0.962 | RVGG | 0.965 | 0.965 | 0.965 | 0.965 |
| Ctrip | Jaccard | 0.508 | 0.505 | 0.513 | 0.508 | TF-IDF | 0.603 | 0.609 | 0.613 | 0.610 | LSI | 0.608 | 0.612 | 0.620 | 0.615 | Word2vec | 0.639 | 0.748 | 0.651 | 0.696 | Doc2vec | 0.651 | 0.870 | 0.657 | 0.748 |
|
|