Research Article
Multimodal Feature Fusion Based Hypergraph Learning Model
Table 3
Classification performance of modal combinations.
| Datasets | Modal combinations | Incidence matrix extension | Incidence matrix extension & Laplacian matrix fusion | Accuracy | Precision | Recall | F1 | Accuracy | Precision | Recall | F1 |
| Cat & Dog | Poor + Poor | 0.687 | 0.662 | 0.674 | 0.667 | 0.722 | 0.718 | 0.720 | 0.718 | PHA + SIFT | Poor + Good | 0.919 | 0.920 | 0.919 | 0.919 | 0.928 | 0.926 | 0.930 | 0.928 | PHA + RVGG | Good + Good | 0.975 | 0.975 | 0.977 | 0.976 | 0.986 | 0.986 | 0.986 | 0.986 | RVGG + HVGG |
| Ctrip | Poor + Poor | 0.619 | 0.620 | 0.619 | 0.619 | 0.623 | 0.621 | 0.623 | 0.621 | Jaccard + TF-IDF | Good + Poor | 0.646 | 0.821 | 0.613 | 0.701 | 0.648 | 0.837 | 0.624 | 0.711 | TF-IDF + Doc2vec | Good + Good | 0.659 | 0.878 | 0.709 | 0.785 | 0.722 | 0.718 | 0.720 | 0.718 | Doc2vec + word2vec |
|
|