Research Article
Multimodal Feature Fusion Based Hypergraph Learning Model
| Datasets | Model | Accuracy | Precision | Recall | F1 | Time (s) |
| Cat & Dog | RVGG | 0.965 | 0.965 | 0.965 | 0.965 | 20.26 | RVGG + HVGG | 0.975 | 0.975 | 0.977 | 0.976 | 49.04 | Incidence matrix extension | RVGG + HVGG | 0.986 | 0.986 | 0.986 | 0.986 | 27.35 | Incidence matrix extension + Laplacian matrix fusion |
| Cifar 10 | RVGG | 0.561 | 0.570 | 0.564 | 0.567 | 11236 | RVGG + HVGG | 0.564 | 0.573 | 0.573 | 0.573 | 23793 | Incidence matrix extension | RVGG + HVGG | 0.594 | 0.613 | 0.583 | 0.598 | 13158 | Incidence matrix extension + Laplacian matrix fusion |
| Ctrip | Doc2vec | 0.651 | 0.870 | 0.657 | 0.748 | 59.7 | Doc2vec + word2vec | 0.659 | 0.878 | 0.709 | 0.785 | 106.86 | Incidence matrix extension | Doc2vec + word2vec | 0.663 | 0.884 | 0.721 | 0.851 | 74.2 | Incidence matrix extension + Laplacian matrix fusion |
| Spambase | Euclidean | 0.646 | 0.701 | 0.646 | 0.672 | 8.17 | Cosin + Euclidean incidence matrix extension | 0.654 | 0.729 | 0.654 | 0.689 | 17.3 | Cosin + Euclidean incidence matrix extension + Laplacian matrix fusion | 0.712 | 0.734 | 0.696 | 0.714 | 10.25 |
|
|