Research Article
Multi-Label Feature Selection with Conditional Mutual Information
Table 3
Average Precision of results after applying multi-label feature selection algorithms on ten datasets.
| Algorithms | CRMIL | SCLS | D2F | FIMF | PMU | AMI | NMDG | FSSL | MFS-MCDM |
| Corel5k | 0.0161 | 0.0139 | 0.0139 | 0.0138 | 0.0139 | 0.0139 | 0.0139 | 0.0140 | 0.0138 | Delicious | 0.0317 | 0.0238 | 0.0195 | 0.0203 | 0.0205 | 0.0292 | 0.0245 | 0.0258 | 0.0241 | Flags | 0.7852 | 0.6405 | 0.6947 | 0.7620 | 0.6986 | 0.7060 | 0.7122 | 0.7291 | 0.6972 | Medical | 0.1130 | 0.0553 | 0.0770 | 0.0553 | 0.0771 | 0.0589 | 0.0649 | 0.0692 | 0.0625 | Scene | 0.7487 | 0.7222 | 0.7085 | 0.6408 | 0.7048 | 0.6441 | 0.7256 | 0.7283 | 0.7204 | Enron | 0.5467 | 0.5138 | 0.5109 | 0.5017 | 0.5083 | 0.4892 | 0.5591 | 0.5337 | 0.5273 | GenBase | 0.8628 | 0.7549 | 0.7428 | 0.7025 | 0.7136 | 0.7813 | 0.8072 | 0.8114 | 0.7739 | Social | 0.5832 | 0.5479 | 0.5212 | 0.5153 | 0.5159 | 0.5427 | 0.5576 | 0.5593 | 0.5491 | Yeast | 0.7832 | 0.7582 | 0.7419 | 0.7404 | 0.7327 | 0.7493 | 0.7701 | 0.7679 | 0.7620 | Emotions | 0.7933 | 0.7701 | 0.7628 | 0.7634 | 0.7593 | 0.7631 | 0.7729 | 0.7814 | 0.7796 | Average | 0.5264 | 0.4801 | 0.4793 | 0.4716 | 0.4745 | 0.4778 | 0.5008 | 0.5020 | 0.4910 |
|
|