Research Article
E-Commerce Picture Text Recognition Information System Based on Deep Learning
Table 1
FPN-NET v2 backbone network structural parameters.
| | Group | Block | Layer | Output |
| | | Input | | 512 × 512 × 3 | | Conv1_x | Initializer block | | 128 × 128 × 32 | | conv2_x | MWI-dense block 1 | Layer × 6 | 64 × 64 × 64 | | Transition layer | 1 × 1 conv; pooling; SE module | | conv3_x | MWI-dense block 2 | Layer × 12 | 32 × 32 × 256 | | Transition layer | 1 × 1 conv; pooling; SE module | | con\4_x | MWl-dense block 3 | layer × 24 | I6 × 16 × 256 | | Transition layer | 1 × 1 conv; pooling; SE module | | conv5_x | MWI-dense block 4 | layer × 8 | 8 × 8 × 256 | | Transition layer | 1 × 1 conv; SE module | | conv6_x | conv6_l | conv3 × 3,s = 2 | 4 × 4 × 512 | | conv6_2 | couv3 × 3,s = 2 | 2 × 2 × 512 | | conv6_2 | conv3 × 3,s = 2 | 1 × 1 × 512 |
|
|