Research Article
Significance of Visible Non-Invasive Risk Attributes for the Initial Prediction of Heart Disease Using Different Machine Learning Techniques
Table 1
Feature selection techniques providing weight to each risk attribute.
| Attributes | Feature selection techniques with their results and mean values | ETC | GBC | RF | RFE | XGB | MEAN |
| Age | 0.92 | 0.92 | 0.87 | 0.25 | 0.92 | 0.78 | Sex | 0.0 | 0.0 | 0.11 | 0.83 | 0.0 | 0.19 | Alcohol consumption | 0.09 | 0.09 | 0.09 | 0.75 | 0.09 | 0.22 | Physical activity | 0.25 | 0.25 | 0.08 | 0.67 | 0.25 | 0.30 | Healthy diet | 0.71 | 0.71 | 0.52 | 1.0 | 0.71 | 0.73 | BMI | 0.74 | 0.74 | 0.79 | 0.0 | 0.74 | 0.60 | Hereditary | 0.38 | 0.38 | 0.4 | 0.92 | 0.38 | 0.49 | Smoking | 0.17 | 0.17 | 0.09 | 0.5 | 0.17 | 0.22 | Systolic BP | 1.0 | 1.0 | 1.0 | 0.08 | 1.0 | 0.82 | Diastolic BP | 0.88 | 0.88 | 0.78 | 0.33 | 0.88 | 0.75 | Socio-economic level | 0.17 | 0.17 | 0.11 | 0.42 | 0.17 | 0.21 |
|
|