Research Article

Neural Matrix Factorization Recommendation for User Preference Prediction Based on Explicit and Implicit Feedback

Table 3

Performance of EINMF compared with other algorithms (embedding size = 64).

DatasetMovieLens-100kMovieLens-1m
HR@NNDCG@NHR@NNDCG@N

ModelN = 5N = 10N = 20N = 5N = 10N = 20N = 5N = 10N = 20N = 5N = 10N = 20
Pop [2]0.20310.37120.47610.07180.07860.08630.20150.29830.42280.07180.07860.0863
Item-KNN [5]0.31600.47300.57580.09760.10670.11850.22370.33710.48740.06770.07140.0817
BPR-MF [10]0.28740.43800.58220.09710.10880.12770.33400.48040.62670.11350.12060.1409
NCF [13]0.60020.75400.83670.26620.26410.28900.6030.72780.82680.26080.24970.2525
DMF [20]0.64580.76670.87380.26720.26920.28350.58920.71970.82570.24010.23540.2413
EINMF0.69780.80380.88870.31630.30920.31790.65400.77810.86180.28800.27280.2825
MI (%)8.054.841.7118.3814.8610.008.466.914.237.469.2511.88

“MI” indicates the smallest improvements of our EINMF over the corresponding baseline. The optimal value of each metric of the baseline top-N task is underlined in the table.