Research Article

Machine-Learning-Based Human Fall Detection Using Contact- and Noncontact-Based Sensors

Table 1

Parameters used for ML methods.

Architecture usedParameters

SVM methodKernel = “radial basis function”
C = 1
Gamma = 0.1
Tolerance = 0.001

RF methodEstimators = 100
Criterion = “Gini”
Sample split = 2
Min. sample leaf = 1
Max. depth = none

MLP methodActivation = “ReLU”
Solver = “Adam”
Max. number of iterations = 200
Tolerance = 0.0001
Shuffle = true
Initial learning rate = 0.001
Beta1 (exponential rate decay) = 0.9
Beta2 (exponential rate decay) = 0.999
Epsilon (numerical stability measure) = 10−8