Research Article

Image Reconstruction Based on Progressive Multistage Distillation Convolution Neural Network

Table 5

Comparison of reconstruction results among algorithms under ×2, ×3, and ×4 reconstruction.

ScaleMethodSet5Set14B100Urban100
PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM

Comparison of ×2 reconstruction results
×2SRCNN36.660.95432.420.90631.360.88829.500.895
VDSR37.530.95933.030.91231.900.89630.760.914
MemNet37.780.96033.280.91432.080.89831.310.919
CARN37.760.95933.520.91732.090.89831.920.926
SRMDNF37.790.96033.320.91532.050.89831.330.920
IDN37.830.96033.300.91532.080.89831.270.920
DNCL37.650.96033.180.91431.970.89730.890.916
FilterNet37.860.96133.340.91532.090.89931.240.920
MRFN37.980.96133.410.91632.140.89931.450.922
CFSRCNN37.790.95933.510.91632.110.89832.070.927
LAPAR-B37.870.96033.390.91632.100.89831.620.924
MADNet-LF37.850.96033.390.91632.050.89831.590.923
SMSR38.000.96033.640.91832.170.89932.190.928
ECBSR37.900.96233.340.91832.100.90231.710.925
HDRN37.750.95933.490.91532.030.89831.870.925
SCFFN38.010.96033.520.91732.120.89931.390.926
PMDN37.950.96033.580.91832.160.89932.100.927

Comparison of ×3 reconstruction results
×3SRCNN32.750.90929.280.82128.410.78626.240.799
VDSR33.660.92129.770.83128.820.79827.140.828
MemNet34.090.92530.000.83528.960.80027.560.838
CARN34.290.92530.290.84129.060.80328.060.849
SRMDNF34.120.92530.040.83728.970.80327.570.840
IDN34.110.92529.990.83528.950.80127.420.836
DNCL33.950.92329.930.83428.910.79927.270.833
FilterNet34.080.92530.030.83728.950.80327.550.838
MRFN34.210.92730.030.83628.990.80327.530.839
CFSRCNN34.240.92630.270.84129.030.80328.040.850
LAPAR-B34.200.92630.170.83929.030.80327.850.846
MADNet-LF34.140.92530.200.83928.980.80227.780.844
SMSR34.400.92730.330.84129.100.80528.250.854
HDRN34.240.92430.230.84028.960.80427.930.849
SCFFN34.290.92630.270.84129.040.80327.980.848
PMDN34.360.92630.290.84029.070.80428.150.852

Comparison of ×4 reconstruction result
×4SRCNN30.480.86327.490.75026.900.71024.520.722
VDSR31.350.88428.010.76727.290.72525.180.752
MemNet31.740.88928.260.77227.400.72825.500.763
CARN32.130.89428.600.78127.580.73526.070.784
SRMDNF31.960.89328.350.77727.490.73425.680.773
IDN31.820.89028.250.77327.410.73025.410.763
DNCL31.660.88728.230.77227.390.72825.360.761
FilterNet31.740.89028.270.77327.390.72925.530.768
MRFN31.900.89228.310.77527.430.73125.460.765
CFSRCNN32.060.89228.570.78027.530.73326.030.782
MADNet-LF32.010.89228.450.77827.470.73325.770.775
LAPAR-B31.940.89228.460.77827.520.73425.850.777
SMSR32.120.89328.550.78127.550.73526.110.787
FDIWN-M32.170.89428.550.78127.580.73626.020.784
ECBSR31.920.89528.340.78227.480.73925.810.777
HDRN32.230.89628.580.78127.530.73726.090.787
SCFFN32.180.89528.560.78127.540.73526.010.783
PMDN32.270.89528.580.78127.540.73525.980.784