Research Article
A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine
Table 4
Comparison of experimental results.
| Method | FD001 | FD002 | FD003 | FD004 | RMSE | Score | RMSE | Score | RMSE | Score | RMSE | Score |
| Spatio-temporal attention | 11.07 | 312.55 | 18.10 | 1339.5 | 10.73 | 329.95 | 17.00 | 2476.90 | BiGRU-AS [6] | 13.68 | 284 | 20.81 | 2454 | 15.53 | 428 | 27.31 | 4708 | Ensemble ResCNN [9] | 12.16 | 212.48 | 20.85 | 2087.77 | 12.01 | 180.76 | 24.97 | 3400.44 | AdaBN-DCNN [10] | 13.17 | 279 | 20.87 | 2020 | 14.97 | 817 | 24.57 | 3690 | MS-DCNN [11] | 11.44 | 196.22 | 19.35 | 3747 | 11.67 | 241.89 | 22.22 | 4844 | Semi-supervised [23] | 12.56 | 231 | 22.73 | 3366 | 12.1 | 251 | 22.66 | 2840 | DCNN [24] | 12.61 | 273.7 | 22.36 | 10412 | 12.64 | 284.1 | 23.31 | 12466 | MODBNE [25] | 15.04 | 334.23 | 25.05 | 5585.34 | 12.51 | 421.91 | 28.66 | 6557.62 | DBN [26] | 15.21 | 417.59 | 27.12 | 9031.64 | 14.71 | 442.43 | 29.88 | 7954.51 | LSTM [25] | 16.14 | 338 | 24.49 | 4450 | 16.18 | 852 | 28.17 | 5550 | MLP [26] | 16.78 | 560.59 | 28.78 | 14026.72 | 18.47 | 479.85 | 30.96 | 10444.35 |
|
|