Research Article

Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark

Table 13

The comparison of performance between the previous studies and our work on the same dataset.

REFFeature selection methodsThe best modelDatasetResult

[22]RFERFCKD datasetAC = 100%
PR = 100%
RE = 100%
FS = 100%
[27]NoA hybrid model LR and RFCKD datasetAC = 99.94%
E = 99.84%
S = 99.80%
[30]CFSAdaBoost based on KNNCKD datasetAC = 98.1%
PR = 98%
RE = 98%
FS = 98%
[23]Rffs, FS, FES, BS, BESRFCKD datasetAC = 98.825%
RE = 98.04%
[24]Cost-sensitive ensemble feature rankingAn ensemble of decision tree modelsCKD datasetAC = 97.27%
PRC = 99.44%
RE = 96.25%
FS = 97.68%
[25]NoRandom subspace-based KNNCKD datasetAC = 100%
RE = 100%
[26]Genetic search algorithmMultilayer perceptronCKD datasetAC = 99.75%
Our workRelief-FDTCKD datasetCross-validation result AC = 100%, PRC = 100%, RRE = 100% FS = 100% result of testing AC = 100%, PRC = 100%, RRE = 100%, FS = 100%
GBT ClassifierCKD datasetCross-validation result AC = 100%, PRC = 100%, RRE = 100%, FS = 100%; result of testing AC = 100%, PRC = 100%, RRE = 100%, FS = 100%